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ABSTRACT 

Myocardial scintigraphy SPECT (Single Photon Emission 
Computed Tomography) is a functional imaging modality 
which is performed at stress and rest. The diagnosis is 
obtained by comparing myocardium blood flow at these two 
different patient states. We propose to add at this technique 
completely non invasive anatomical data to avoid the use of 
invasive modalities like coronarography for example. For 
this purpose, we intend to extend the powerful technique of 
2D Fourier descriptor to 3D objects by modeling the left 
ventricle at stress and at rest using the spherical harmonic 
descriptors so as to provide quantitative information to the 
physician to evaluate the extent of an eventual ischemia. 

Index Terms— Myocardial scintigraphy, Left ventricle, 
Spherical parametrization, Invariant descriptors, Spherical 
harmonics

1. INTRODUCTION 

Advanced techniques of cardiac imagery provide today 
better assessment of the left ventricle (LV) shape and 
function and allow visualization of its outer and inner walls 
(epicardium and endocardium) with increasing resolution in 
space and time. Consequently, data available is large and 
unstructured. That is why it is important to find a pertinent 
model to help the physician to establish a reliable diagnosis. 
Extensive researches have been conducted in order to 
reconstruct and model the LV geometry. A global 
representation for example was used to describe the surface 
as a whole. It reduced a shape as a set of parameters where 
each one affects the entire shape. Staib and Duncan [7] used 
a torus topology. They applied this approach on many 
shapes found in medical imagery. However it illustrates 
some difficulties especially in representing shapes with 
spherical topology. Algebraic surfaces are also used in 
modelling LV shape. Cauvin and al. [3] introduced a half 
ellipsoid in apical region with a cylinder in the basal one. 
Superquadrics are a rich set of surfaces that can represent a 
large number of real and medical objects. Bardinet and al. 
[1] present an approach based on these surfaces to analyse 
the shape and the deformation of the LV of the heart. 

Spherical harmonic analysis is very much analogous to 
Fourier shape approach. The real difficulty comes from 
surface parametrization. Brechbuhler and al. [2] present a 
method of parametrization of closed surfaces for 3D shape 
description. The parametrization is formulated as a 
constrained optimization problem. The convergence of this 
program becomes unstable for object meshes consisting of 
several thousand vertices. Authors in [5] apply a new 
optimization process which aims to minimize distortions 
that can appear after mesh projection to the parameter space.  
In this paper, we describe a one to one mapping to the 
sphere and a uniform parametrization that aims to optimize 
the model reconstruction and to overcome limitations 
caused by modelling non star-shaped objects. Myocardial 
scintigraphy is used to evaluate this approach so as to give 
anatomical information to these functional and non invasive 
cardiac images. Reconstructed models of the LV at stress 
and at rest are compared to quantify deformation between 
these two particular sequences.  

2. MYOCARDIAL SCINTIGRAPHY 

Myocardial scintigraphy with thallium 201 (Figure 1) is a 
simple, safe, and valuable non invasive functional technique 
in evaluating the condition of patients with cardiac
disorders. Images are obtained at rest and stress. The 
diagnosis of an ischemic heart disease is obtained by 
comparing the topology of myocardium blood flow at these 
two different instants. In this work, we aim to add to these 
functional information anatomical data which can help the 
physician to evaluate numerically the extent of an ischemia. 
This can avoid the use of invasive modalities like 
coronarography for example. 

Fig 1: Myocardial scintigraphic data - the first line: sequence at stress, 
second line: sequence at rest. 

For this purpose, segmentation of scintigraphic 2D layers 
must be performed to extract epicardium data. A 
segmentation based on the histogram of the intensities is 
used to isolate grossly the LV cavity, and therefore, with the 
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help of mathematical morphology operators [6] we 
automatically smooth and isolate both surfaces. 
Reconstruction of both endocardium and the epicardium 
walls (Figure 2) provides information about the thickness of 
the myocardium muscle by making longitudinal cuts in the 
rendered surface.  

Fig 2: 3D representation of both endocardium and epicardium walls – A: 
Triangular wireframe, B: rendered surface of a longitudinal cut of A 
(Visualization of the myocardium thickness) 

Triangular meshes obtained after reconstruction are 
unstructured and consisting of several thousand vertices. So 
it is necessary to find a pertinent and compact model that we 
can manipulate easily. One of the principle challenges faced 
in the area of shape modeling is that a model and its image 
under a transformation are considered to be the same. The 
challenge in comparing two shapes is to find a metric 
between these shapes. In this paper, we use the spherical 
harmonic analysis to model the epicardium wall because it 
is a general tool that can be applied to many kinds of shapes 
especially genus zero surfaces and it provides a reduction in 
both storage space and time of comparison. 

3. SPHERICAL HARMONIC ANALYSIS 

LV surface obtained after triangulation is a genus zero 
object which could be represented by a spherical 
bidimensional parametrization. In this case, spherical 
harmonic analysis is applied to derive a complete and 
invariant shape representation. By completeness, 
representation contains sufficient information for 
reconstructing the original object. Invariance is a property 
of geometric configurations which remained unchanged 
under an appropriate class of transformations.  

3.1. Fourier transform on a group 

A representation of a given group G is a continuous 
operator T on this group, taking values in the group of non 
singular continuous linear transformations of the linear 
space V and satisfying the functional equation : 

T(g1g2 )=T(g1)T(g2) (1) 
Let f be in L1(G,dμ), where G is assumed to be abelian and 
μ is the invariant measure of G. The Fourier transfom on G
is defined by : 
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Where T represents all irreductible and unitary 
representation of G.
In our case, LV surfaces are considered to be genus zero. 
Thus, f is defined on S2 which is compact. The group of 3D 
Euclidean motion M(3) is the cross product of translations 
isomorphic to IR3 and the group of the 3D rotation SO(3) : 
M(3)=IR3XSO(3) [4]. Consequently, after the spherical 
parametrization, the invariance formulation can be 
schematized as follow: 
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and d is the normalized invariant measure on S2 given by 

ddd sin
4
1

The compactness property of S2 implies that the Fourier 
transform exists and is discrete. It corresponds on the 
Fourier coefficients calculated on the well known basis of 
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Legendre associated functions. By applying Fourier 
coefficients on S2, the shift theorem transforms (3) on: 
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3.2. Spherical parametrization  

To apply spherical harmonic analysis, it is important to find 
a spherical parametrization that allows the mapping onto the 
S2. For 3D objects, parametrization is far less obvious 
because surfaces cannot be traced in an equally simple 
manner as can be done for the contour of 2D region. 
We present a uniform one to one mapping onto the 
parameter space S2  that can be used even for non star 
shaped objects. By uniformity, we intend to obtain an 
equally distributed points on the sphere which can approach 
the mathematical formulation given by (3). 

3.2.1. Mapping onto the sphere 
The method we use to map the vertices from the original 
object to the sphere surface is an iterative blow-up 
algorithm in which the inflation of a balloon is simulated. 
The centre position of the target sphere is the same that the 
object one. The sphere radius Rs is fixed at the beginning of 
the mapping process which converges when all vertices of 
the initial mesh are projected onto the sphere.  

iis vR max2 (6) 
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Where 
iv  is the vertex radius of the ith vertex.

During each iteration, vertices move toward the parameter 
space. This migration depends on vertices position. The 
further are the vertices are far from the sphere centre, the 
faster the projection is. This process is formulated by: 
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Where new
iR is the new radius calculated in the ith iteration, 

old
iR is the old radius of the (i-1)th iteration and a is a 

constant. 

3.2.2. Uniformization 
Uniformization is added for minimizing errors and 
distortions due to parameterization. In fact, when points of 
the parametrized mesh are equally distributed on the 
surface, distortions and errors are reduced considerably. 
Experimental demonstration of the importance of the 
uniform parametrization is given in [2]. 
The uniform mesh method is based on vertices area 
equalization. The objective of this approach is to obtain, 
through an iterative process, a triangular mesh composed of 
equal area faces. At each iteration of the mapping process, 
the Cartesian coordinates of each vertex are altered in order 
to equalize the adjacent faces. This procedure is formulated 
by: 
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With x is the spatial coordinate vector of a vertex, K is the 
number of the surrounding faces, kA is the area of the kth

triangle and kc is the spatial coordinate vector of its centre. 

3.3. Rotation invariant descriptors 

Using the formulation presented at (5) we can extract 
pertinent invariant descriptors under SO(3). We propose the 
following set (* : transpose and conjugate operator): 
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Consequently, comparison between spherical harmonic 
models can be performed by calculating the L2 difference 
between the invariant descriptors of f  and f’ formulated by : 
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4. EXPERIMENTAL RESULTS 

In this section, we illustrate and discuss the main results 
obtained on synthetic and medical images. 

4.1. Synthetic images 
In order to validate the parametrization method, we start by 
apply the approach presented above on a synthetic meshes. 

Fig 3: Reconstruction of spherical model - A: initial synthetic object, B: 
degree 1, C: degree 5, D: degree 6 

4.2. Medical images 

We illustrate, in this section, projection steps from the initial 
object (epicardium surface) to the parameter space (the unit 
sphere (Figure 4). At each iteration, we try to uniform the 
projected mesh by adjusting triangular areas. 

Fig 4: Spherical parametrization - A: Epicardium wall of a patient at stress, 
B: 3rd iteration, C: 30th iteration, D: 100 iteration 

4.2.1. Spherical model reconstruction 
After extraction of spherical harmonic coefficients, the 

reconstruction of the LV model can be performed (eq. 2). It 
is important to add that these coefficients are global and 
pertinent. That is meaning that with a small number of 
spherical harmonics (low frequencies) we can represent the 
global form of the LV of the heart. In Figure 5, we illustrate 
reconstructions steps up to the 7th degree of the epicardium 
wall shown in Figure 4-A.
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Fig 5: Reconstructed models using spherical harmonic series truncated at 
different degrees - A: degree 1, B: degree 2, C: degree 3, D: degree 4, E: 
degree 5, F: degree 7 

5.2.2. Quantitative analysis of the LV between stress and 
rest  
Modelling the LV surface at stress and rest by two harmonic 
surfaces allows a numerical estimation of the deformation 
through these two specific states (Eq. 6). This evaluation 
can help the physician to make a reliable diagnosis. For the 
two following figures (Figure 6 and 7), we have 
reconstructed spherical harmonic models from scintigraphic 
data of one healthy voluntary and a pathologic case 
respectively. Figure 6 shows that the distance between the 
two reconstructed models is valuated as 0.26. Figure 7
shows that the distance value calculated is 1.05. 

Fig 6: Modelling of the epicardium wall of a voluntary – 
Left: rendered surfaces respectively at stress and rest, right: 
reconstructed models using spherical harmonics 
respectively at stress and at rest

Fig 7: Modelling of the epicardium wall of a patient – Left: rendered 
surfaces respectively at stress and rest, right: reconstructed models using 
spherical harmonics respectively at stress and at rest 

These numeric values are additional information obtained 
from scintigraphic data and tell the patrician about the 
extension of the disease. In fact, distances can be ordered 
and grouped by intervals. Each one represents a specific 
degree of the cardiac pathology.  

6. CONCLUSION 

We have proposed in this paper an approach to model 
anatomical structures particularly the LV of the heart using 
spherical harmonic descriptors. This approach is based on a 
mapping toward the sphere and a uniform parametrization. 
The obtained model is compact and pertinent and allows us 
to evaluate deformation between two specific states, stress 
and rest, by calculating distance separating the two 
respective models. This comparison is one proposed 
technique to extract quantitative parameters and to evaluate 
the extension of cardiac pathology. To validate our 
approach, we applied first the three dimensional modelling 
process on synthetic data and then we used scintigraphic 
images which is an imaging modality providing functional 
information in order to give supplement anatomical aspect 
and to help patricians to make reliable diagnosis.   
Future directions will include a mathematical method to 
avoid the appearance of distortions in high frequencies 
during the model reconstruction step. A more efficient 
algorithm will be proposed to obtain a better uniform 
parametrization.  
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